Minimal Supervision for Language Learning
نویسندگان
چکیده
A fundamental step in sentence comprehension involves assigning semantic roles to sentence constituents. To accomplish this, the listener must parse the sentence, find constituents that are candidate arguments, and assign semantic roles to those constituents. Each step depends on prior lexical and syntactic knowledge. Where do children begin in solving this problem when learning their first languages? To experiment with different representations that children may use to begin understanding language, we have built a computational model for this early point in language acquisition. This system, BabySRL, learns from transcriptions of natural child-directed speech and makes use of psycholinguistically plausible background knowledge and realistically noisy semantic feedback to begin to classify sentences at the level of “who does what to whom.” Starting with simple, psycholinguistically-motivated representations of sentence structure, the BabySRL is able to learn from full semantic feedback, as well as a supervision signal derived from partial semantic background knowledge. In addition we combine the BabySRL with an unsupervised Hidden Markov Model part-of-speech tagger, linking clusters with syntactic categories using background noun knowledge so that they can be used to parse input for the SRL system. The results show that proposed shallow representations of sentence structure are robust to reductions in parsing accuracy, and that the contribution of alternative representations of sentence structure to successful semantic role labeling varies with the integrity of the parsing and argument-identification stages. Finally, we enable the BabySRL to improve both an intermediate syntactic representation and its final semantic role classification. Using this system we show that it is possible for a simple learner in a plausible (noisy) setup to begin comprehending simple semantics when initialized with a small amount of concrete noun knowledge and some simple syntax-semantics mapping biases, before acquiring any specific verb knowledge.
منابع مشابه
A Comparative Study of Self-Supervision and the Self-Efficacy of Iranian EFL Teachers and Those of Intermediate Adult Learners
The present study was conducted to examine the relationship between the self-supervision and the self-efficacy of Iranian EFL teachers and also the relationship between the self-supervision and the self-efficacy of intermediate adult learners individually. To this end, 40 EFL teachers and 55 intermediate adult learners were selected from two branches of Kish Language Institute. In this study, “...
متن کاملAutomation and Evaluation of the Keyword Method for Second Language Learning
In this paper, we combine existing NLP techniques with minimal supervision to build memory tips according to the keyword method, a well established mnemonic device for second language learning. We present what we believe to be the first extrinsic evaluation of a creative sentence generator on a vocabulary learning task. The results demonstrate that NLP techniques can effectively support the dev...
متن کاملEvent Detection and Co-reference with Minimal Supervision
An important aspect of natural language understanding involves recognizing and categorizing events and the relations among them. However, these tasks are quite subtle and annotating training data for machine learning based approaches is an expensive task, resulting in supervised systems that attempt to learn complex models from small amounts of data, which they over-fit. This paper addresses th...
متن کاملLearning Language Semantics from Ambiguous Supervision
This paper presents a method for learning a semantic parser from ambiguous supervision. Training data consists of natural language sentences annotated with multiple potential meaning representations, only one of which is correct. Such ambiguous supervision models the type of supervision that can be more naturally available to language-learning systems. Given such weak supervision, our approach ...
متن کاملActive Dual Supervision: Reducing the Cost of Annotating Examples and Features
When faced with the task of building machine learning or NLP models, it is often worthwhile to turn to active learning to obtain human annotations at minimal costs. Traditional active learning schemes query a human for labels of intelligently chosen examples. However, human effort can also be expended in collecting alternative forms of annotations. For example, one may attempt to learn a text c...
متن کاملIncidental Supervision: Moving beyond Supervised Learning
Machine Learning and Inference methods have become ubiquitous in our attempt to induce more abstract representations of natural language text, visual scenes, and other messy, naturally occurring data, and support decisions that depend on it. However, learning models for these tasks is difficult partly because generating the necessary supervision signals for it is costly and does not scale. This...
متن کامل